Оглавление

ПРЕДІ	исло	ВИЕ	17
Глава	I. TO	очные методы решения линейных	
	СИСТ	ГЕМ	19
§1.	MATP	ИЧНЫЕ НОРМЫ	19
§2.		ГИМОСТЬ МАТРИЦЫ, БЛИЗКОЙ К ОБРАТИ-	
		МАТРИЦЕ	26
§3.	ОШИ	БКИ В РЕШЕНИЯХ ЛИНЕЙНЫХ СИСТЕМ	27
§4.	METC	ОД ГАУССА	31
	§4.1.	Алгоритм метода Гаусса	32
	§ 4.2.	Оценка количества арифметических операций в	
		методе Гаусса	34
	§ 4.3.	1 //	
		тельности элементарных преобразований	35
	§ 4.4.	1 1	37
	§ 4.5.	T T	
		алгоритме построения LU -разложения	39
	§ 4.6.	Осуществимость метода Гаусса	40
§5.		ОДЫ ПОСЛЕДОВАТЕЛЬНОГО ИСКЛЮЧЕНИЯ	
		ВЕСТНЫХ ДЛЯ ЛЕНТОЧНЫХ МАТРИЦ	41
	§ 5.1.		41
	§ 5.2.	T T T T T T T T T T T T T T T T T T T	
		ных матриц	43
	§ 5.3.	r r r r r r r r r r r r r r r r r r r	45
§6.	ЗАДА	ЧА ОБРАЩЕНИЯ МАТРИЦЫ	47

§ 7.	METO,	Д ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА	48
§8.	METO,	Д ЖОРДАНА (ГАУССА – ЖОРДАНА)	55
§9.	ПОЛО	ЖИТЕЛЬНО ОПРЕДЕЛЕННЫЕ МАТРИЦЫ	58
§ 10	.МЕТО,	Д ХОЛЕЦКОГО (КВАДРАТНОГО КОРНЯ)	61
	§ 10.1.	Разложение Холецкого	61
	§ 10.2.	Алгоритм построения разложения Холецкого	63
	§ 10.3.	Оценка количества арифметических операций в алгоритме построения разложения Холецкого	66
§ 11.	.МЕТО	Д ОРТОГОНАЛИЗАЦИИ	68
		Описание алгоритма	68
		Оценка количества арифметических операций	70
	§ 11.3.	Организация вычислений и хранения данных	71
	§ 11.4.	Аналог выбора главного элемента	72
§ 12	.МЕТО,	Д ВРАЩЕНИЙ	74
	§ 12.1.	Матрица элементарного вращения и ее свойства	75
	§ 12.2.	Алгоритм метода вращений	79
	§ 12.3.	Оценка количества арифметических операций в методе вращений	82
	§ 12.4.	Построение QR -разложения методом вращений .	85
	§ 12.5.	Оценка количества арифметических операций в алгоритме построения QR -разложения методом	0.0
012	METO	вращений	88
§ 13.		Д ОТРАЖЕНИЙ	88
		Матрица отражения и ее свойства	89
		Алгоритм метода отражений	92
	§ 13.3.	Оценка количества арифметических операций в методе отражений	96
	§ 13.4.	Построение <i>QR</i> -разложения методом отражений	99

	§ 13.5.	Оценка количества арифметических операций в алгоритме построения QR -разложения методом	101
		отражений	101
§ 1	МУ В	ЕДЕНИЕ МАТРИЦЫ К ПОЧТИ ТРЕУГОЛЬНО- ВИДУ УНИТАРНЫМ ПОДОБИЕМ МЕТОДОМ	
	ВРАШ	[ЕНИЙ	103
	§ 14.1.	Случай произвольной матрицы	103
	§ 14.2.	Случай симметричной матрицы	110
§ 1	5.ПРИВ	ЕДЕНИЕ МАТРИЦЫ К ПОЧТИ ТРЕУГОЛЬНО-	
		ВИДУ УНИТАРНЫМ ПОДОБИЕМ МЕТОДОМ	
	OTPA	ЖЕНИЙ	117
	§ 15.1.	Случай произвольной матрицы	118
	§ 15.2.	Случай самосопряженной матрицы	123
Глава	II. M	ЕТОДЫ НАХОЖДЕНИЯ СОБСТВЕННЫХ ЗНА	_
		ий ´	
§ 1	. точн	ЫЕ И ИТЕРАЦИОННЫЕ МЕТОДЫ	129
§2	. ЛОКА	ЛИЗАЦИЯ СОБСТВЕННЫХ ЗНАЧЕНИЙ	132
§3	. ОШИІ	БКИ ПРИ НАХОЖДЕНИИ СОБСТВЕННЫХ ЗНА-	
		Й	135
§4	. СТЕП	ЕННОЙ МЕТОД	136
	§ 4.1.	Нахождение максимального по модулю соб-	
		ственного значения	137
		§ 4.1.1. Описание алгоритма	137
		§ 4.1.2. Оценка количества арифметических	
		операций на один шаг алгоритма	139
	§4.2.	Нахождение минимального по модулю соб-	
		ственного значения	140
	§4.3.	Нахождение собственного значения, наиболее	
		близкого к заданному числу λ	
§ 5	. METO	Д ВРАЩЕНИЙ ЯКОБИ	142
	851	Описание апгоритма	142

	§ 5.2.	Выбор у	гла вращения	45
	§ 5.3.	Стратеги	и выбора обнуляемого элемента 1	48
		§ 5.3.1.	Метод вращений с выбором максимального элемента	49
		§ 5.3.2.	Метод вращений с циклическим выбором обнуляемого элемента	50
		§ 5.3.3.	Метод вращений с выбором оптимального элемента	51
§ 6.	METO	д бисек	ЦИИ 1	53
	§ 6.1.		м вычисления k -го по величине собовначения методом бисекции 1	54
	§ 6.2.		м вычисления всех собственных значе- аданном интервале методом бисекции . 1	55
		§ 6.2.1.	Рекурсивный алгоритм	55
		§ 6.2.2.	Алгоритм последовательного поиска собственных значений	56
	§ 6.3.		м вычисления всех собственных значе- одом бисекции	57
	§ 6.4.		ние числа перемен знака в последова- и главных миноров	57
		§ 6.4.1.	Вычисление числа перемен знака в последовательности главных миноров с помощью LU -разложения 1	57
		§ 6.4.2.	Вычисление числа перемен знака в последовательности главных миноров с помощью рекуррентных формул 1	58
§ 7.	LR AJ	ІГОРИТМ	[
•	§ 7.1.		ожение, используемое в <i>LR</i> алгоритме . 1	60
			Алгоритм построения <i>LR</i> -разложения для произвольной матрицы	

		§ 7.1.2.	Алгоритм построения <i>LR</i> -разложения	
			для почти треугольной матрицы	164
		§ 7.1.3.	Алгоритм построения LR -разложения для трехдиагональной матрицы	164
	§ 7.2.	LR алгор	оитм нахождения собственных значений	165
		§ 7.2.1.	LR алгоритм нахождения собственных значений для почти треугольной матрицы	167
		§ 7.2.2.	LR алгоритм нахождения собственных значений для трехдиагональной матрицы	168
	§ 7.3.	Ускорени	е сходимости алгоритма	
	Ü	§ 7.3.1.	Исчерпывание матрицы	
		§ 7.3.2.	Сдвиги	
		§ 7.3.3.	Практическая организация вычисле-	
		Ü	ний в <i>LR</i> алгоритме	173
§ 8.	METO,	д холец	КОГО	174
	§ 8.1.	Разложен Холецког	ие Холецкого, используемое в методе	174
		§ 8.1.1.	Алгоритм построения разложения Xолецкого для произвольной самосопряженной матрицы	175
		§ 8.1.2.	Алгоритм построения разложения Холецкого для трехдиагональной матрицы	177
	§ 8.2.	Метод Xо чений .	олецкого нахождения собственных зна-	178
		§ 8.2.1.	Метод Холецкого нахождения собственных значений для трехдиагональной матрицы	180
	802	Varana		
	80.5.	_	е сходимости алгоритма	
		§ 8.3.1.	Исчерпывание матрицы	182

		§ 8.3.2.	Сдвиги	182
		§ 8.3.3.	Практическая организация вычислений в методе Холецкого	183
	0.0	TEODIUM.		
§9.	QR AJ		[
	§ 9.1.	QR-разло	ожение, используемое в QR алгоритме.	185
		§ 9.1.1.	Алгоритм построения QR -разложения для произвольной матрицы	185
		§ 9.1.2.	Алгоритм построения QR -разложения для почти треугольной матрицы	185
		§ 9.1.3.	Алгоритм построения QR -разложения для трехдиагональной матрицы	194
	§ 9.2.	QR алгој	оитм нахождения собственных значений	199
		§ 9.2.1.	<i>QR</i> алгоритм нахождения собственных значений для почти треугольной матрицы	201
		§9.2.2.	QR алгоритм нахождения собственных значений для самосопряженной трехдиагональной матрицы	
	§9.3.	Ускорени	е сходимости алгоритма	206
		§ 9.3.1.	Исчерпывание матрицы	
		§ 9.3.2.	Сдвиги	207
		§9.3.3.	Практическая организация вычислений в QR алгоритме	208
§ 10	,	,	НОЙ ИТЕРАЦИИ НАХОЖДЕНИЯ СОБ- КТОРОВ	209
СПИС	ок те	м к пер	ВОЙ ЧАСТИ КУРСА	213
лите	PATYPA	А К ПЕРЕ	ВОЙ ЧАСТИ КУРСА	219
Глава	III. МІ НОЙ І	ЕТОДЫ ПЕРЕМЕ	ПРИБЛИЖЕНИЯ ФУНКЦИЙ ОД- ННОЙ	220

§ 1.	ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОЙ ИНТЕРПОЛЯ-ЦИИ	220
§ 2.	ОБУСЛОВЛЕННОСТЬ БАЗИСА	223
	интерполяционный многочлен лагранжа .	225
§4.	РАЗДЕЛЕННЫЕ РАЗНОСТИ	227
§ 5.	ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА	234
§6.	ИНТЕРПОЛЯЦИЯ «ДВИЖУЩИМИСЯ» МНОГОЧЛЕНАМИ	236
§7.	ОЦЕНКИ ПОГРЕШНОСТИ ИНТЕРПОЛЯЦИОННОЙ ФОРМУЛЫ НЬЮТОНА	238
§8.	РАЗДЕЛЕННЫЕ РАЗНОСТИ С КРАТНЫМИ УЗЛАМИ .	240
§9.	ИНТЕРПОЛЯЦИЯ С КРАТНЫМИ УЗЛАМИ	242
§ 10.	ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ МНОГОЧЛЕНА ЛАГРАНЖА В ФОРМЕ НЬЮТОНА	248
§ 11.	МНОГОЧЛЕНЫ ЧЕБЫШЁВА	253
§ 12.	МИНИМИЗАЦИЯ ПОГРЕШНОСТИ ИНТЕРПОЛЯЦИИ. ЗА СЧЕТ ВЫБОРА УЗЛОВ	257
§ 13.	АЗЛОЖЕНИЕ ПО МНОГОЧЛЕНАМ ЧЕБЫШЁВА	260
	§13.1. Постановка задачи линейной интерполяции	260
	§ 13.2. Алгоритм построения разложения	265
	§ 13.3. Оценка количества арифметических операций	266
	§ 13.4. Связь разложения по многочленам Чебышёва и интерполяции	267
§ 14.	.ПРЕИМУЩЕСТВА КУСОЧНО-МНОГОЧЛЕННОЙ АП-ПРОКСИМАЦИИ	270
§ 15.	. КУСОЧНО-ЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ	271
§ 16.	КУСОЧНО-ЛИНЕЙНАЯ АППРОКСИМАЦИЯ МЕТО- ДОМ НАИМЕНЬШИХ КВАДРАТОВ	274
	§ 16.1. Постановка залачи линейной интерполяции	

§ 16.2.	Вычисление матрицы системы задачи линейной интерполяции	277
§ 16.3.	Свойства приближающей функции	280
§ 16.4.	Вычисление правой части системы задачи линейной интерполяции	283
	ОКСИМАЦИЯ МНОГОЧЛЕНАМИ ЧЕБЫШЁВА ДОМ НАИМЕНЬШИХ КВАДРАТОВ	289
§ 17.1.	Интегральные свойства многочленов Чебышёва .	289
§ 17.2.	Постановка задачи линейной интерполяции	292
§ 17.3.	Вычисление коэффициентов разложения	294
§ 17.4.	Алгоритм вычисления коэффициентов разложения	299
§ 17.5.	Оценка количества арифметических операций	300
	ЧНО-ЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ НЕГЛАД- ФУНКЦИЙ НА СПЕЦИАЛЬНЫХ СЕТКАХ	300
19.ИНТЕ ЦИЯМ	РПОЛЯЦИЯ КУСОЧНО-КУБИЧЕСКИМИ ФУНК- ИИ	303
§ 19.1.	Общая схема	304
§ 19.2.	Алгоритм вычисления коэффициентов многочлена P_i	304
§ 19.3.	Кусочная интерполяция кубическими многочленами Эрмита	305
§ 19.4.	Кусочная интерполяция кубическими многочленами Бесселя	307
§ 19.5.	Кусочная интерполяция кубическими многочленами методом Акимы	308
§ 19.6.	Кусочная интерполяция кубическими многочленами с использованием разделенных разностей.	310
§ 19.7.	Интерполяция кубическими сплайнами	312
§ 19.8.	Определение недостающих граничных условий.	314

§ 19.8.1.	Определение недостающих граничных условий по известным значениям пер-	
	вой производной функции в граничных узлах	314
§ 19.8.2.	Определение недостающих граничных условий по известным значениям вто-	
	рой производной функции в граничных узлах	315
§ 19.8.3.	«Естественные» граничные условия	316
§ 19.8.4.	Условие «отсутствия узла» в приграничных узлах	317
§ 19.8.5.	Дополнительный узел в приграничных узлах	
819.8.6	Экстраполяция в приграничных узлах .	
	ІЯ ПАРАБОЛИЧЕСКИМИ СПЛАЙНА-	322
МИ		322
§ 20.1. Общая сх	сема	
=	и вычисления коэффициентов много-	
		323
§ 20.3. Интерпол	в в параболическими сплайнами	325
§ 20.4. Определе	ние недостающих граничных условий.	328
§ 20.4.1.	Определение недостающих граничных	
	условий по известным значениям пер-	
	вой производной функции в гранич-	220
220.42	ных узлах	328
§ 20.4.2.	Определение недостающих граничных условий по известным значениям вто-	
	рой производной функции в гранич-	
	ных узлах	332
§ 20.4.3.	«Естественные» граничные условия	
	Условие «отсутствия узла» в пригра-	
=	ничных узлах	333

§ 20.4.5.	Дополнительный узел в пригранич-	
	ных узлах	336
§ 20.4.6.	Экстраполяция в приграничных узлах .	337
Глава IV. МЕТОДЫ I	приближения функций мно-	
ГИХ ПЕРЕМЕ	нных	338
§1. ИНТЕРПОЛЯЦІ	ИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕН-	
НЫХ ТЕНЗОРН	ыми произведениями	338
§1.1. Постано	вка задачи интерполяции тензорными	
произвед	ениями и теорема корректности	339
§ 1.2. Оценка ч	нисла арифметических операций	341
§1.3. Алгорит	м интерполяции тензорными произве-	
дениями		342
§ 1.4. Програм	мная реализация алгоритма	343
-	ляция тензорными произведениями в	
случае м	ногочленной аппроксимации	345
§ 1.5.1.	Интерполяционный многочлен Лагран-	
	жа	345
§ 1.5.2.	Разделенные разности для функции	
	многих переменных	
§ 1.5.3.	Интерполяционная формула Ньютона .	347
§ 1.5.4.	Интерполяция «движущимися» мно-	
	гочленами	
§ 1.5.5.	Интерполяция с кратными узлами	
§ 1.5.6.	Разложение по многочленам Чебышёва	349
§ 1.5.7.	Аппроксимация многочленами Чебы-	
	шёва методом наименьших квадратов .	351
-	ляция тензорными произведениями в	
•	усочно-многочленной аппроксимации	
§ 1.6.1.	Кусочно-линейная интерполяция	354
§ 1.6.2.	1 ,	
	тодом наименьших квадратов	356

§ 1.6.3.	Кусочно-кубическая интерполяция	358
§ 1.6.4.	Кусочно-квадратичная интерполяция .	362
§2. ПРИБЛИЖЕНИІ	Е ФУНКЦИЙ МНОГИХ ПЕРЕМЕН-	
=	м конечных элементов	366
§2.1. Постанов	вка задачи линейной интерполяции	366
§ 2.2. Способы	построения триангуляции области	367
§ 2.3. Приближ	ение функций в треугольнике	369
§ 2.3.1.	Постановка задачи линейной интерполяции	369
§ 2.3.2.	Приближение функций в прямоугольном треугольнике	370
§ 2.3.3.	Приближение линейными функциями .	372
§ 2.3.4.	Приближение квадратическими функциями	375
§ 2.3.5.	Приближение кубическими функциями	379
- *	ение функций методом наименьших в	383
	Постановка задачи линейной интерполяции	
§ 2.4.2.	Вычисление системы задачи линейной интерполяции	
СПИСОК ТЕМ КО ВТ	ОРОЙ ЧАСТИ КУРСА	387
	РРОЙ ЧАСТИ КУРСА	